Maximum Principles for Discrete and Semidiscrete Reaction-Diffusion Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OnModifications of Continuous and Discrete Maximum Principles for Reaction-Diffusion Problems

In this work, we present and discuss some modifications, in the form of two-sided estimation (and also for arbitrary source functions instead of usual sign-conditions), of continuous and discrete maximum principles for the reactiondiffusion problems solved by the finite element and finite difference methods. AMS subject classifications: 35B50, 65N06, 65N30, 65N50

متن کامل

Higher-order Discrete Maximum Principle for 1d Diffusion-reaction Problems

Sufficient conditions for the validity of the discrete maximum principle (DMP) for a 1D diffusion-reaction problem −u + κu = f with the homogeneous Dirichlet boundary conditions discretized by the higher-order finite element method are presented. It is proved that the DMP is satisfied if the lengths h of all elements are shorter then one-third of the length of the entire domain and if κh is sma...

متن کامل

Discrete maximum principles for nonlinear parabolic

Discrete maximum principles are established for finite element approximations 10 of nonlinear parabolic PDE systems with mixed boundary and interface conditions. The 11 results are based on an algebraic discrete maximum principle for suitable ODE systems. 12

متن کامل

Recursive POD expansion for reaction-diffusion equation

This paper focuses on the low-dimensional representation of multivariate functions. We study a recursive POD representation, based upon the use of the power iterate algorithm to recursively expand the modes retained in the previous step. We obtain general error estimates for the truncated expansion, and prove that the recursive POD representation provides a quasi-optimal approximation in L2 nor...

متن کامل

Chaotic Pulses for Discrete Reaction Diffusion Systems

Existence and dynamics of chaotic pulses on 1D lattice are discussed. Traveling pulses arise typically in reaction diffusion systems like the FitzHugh-Nagumo equations. Such pulses annihilate when they collide each other. A new type of traveling pulse has been found recently in many systems where pulses bounce off like elastic balls. We consider the behavior of such a localized pattern on 1D la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Dynamics in Nature and Society

سال: 2015

ISSN: 1026-0226,1607-887X

DOI: 10.1155/2015/791304